Get GPU server code
- Print
- PDF
Get GPU server code
- Print
- PDF
Article summary
Did you find this summary helpful?
Thank you for your feedback
Available in VPC
Get the list of GPU server codes.
Request
The following describes the request format for the endpoint. The request format is as follows:
Method | URI |
---|---|
GET | /server-products |
Request headers
For headers common to all CLOVA NSML APIs, see Common CLOVA NSML headers.
Request example
The following is a sample request.
curl --location --request GET 'https://nsml.apigw.ntruss.com/nsml/v1/server-products' \
--header 'x-ncp-apigw-timestamp: {Timestamp}' \
--header 'x-ncp-iam-access-key: {Access Key}' \
--header 'x-ncp-apigw-signature-v2: {API Gateway Signature}' \
--header 'x-ncp-apigw-api-key: {API Key}' \
--header 'Content-Type: application/json'
Response
The following describes the response format.
Response body
The following describes the response body.
Field | Type | Required | Description |
---|---|---|---|
serverProductList | Array | - | List of server products |
totalCount | Integer | - | Number of response results |
serverProductList
The following describes serverProductList
.
Field | Type | Required | Description |
---|---|---|---|
gpuSvrCode | Integer | - | GPU server code |
nodeCounts | Array | - | Number of available nodes (VM, BM) |
useType | String | - | GPU server type
|
serverProductCode | String | - | GPU server product code |
productName | String | - | GPU server product name |
engFullName | String | - | GPU server product English name |
Response status codes
For response status codes common to all CLOVA NSML APIs, see Common CLOVA NSML response status codes.
Response example
The following is a sample example.
{
"serverProductList": [
{
"gpuSvrCode": 1,
"nodeCounts": [
1
],
"useType": "TRAIN",
"serverProductCode": "SVR.VSVR.GPU.V100S.G001.C008.M090.NET.SSD.B050.G001",
"productName": "VCNSL.V100.V001",
"engFullName": "Tesla V100 NVlink 2.0 SXM2 1GPU, 8vCPU, 90GB Mem"
},
{
"gpuSvrCode": 2,
"nodeCounts": [
1,
3
],
"useType": "TRAIN",
"serverProductCode": "SVR.VSVR.GPU.V100S.G002.C016.M180.NET.SSD.B050.G001",
"productName": "VCNSL.V100.V002",
"engFullName": "Tesla V100 NVlink 2.0 SXM2 2GPU, 16vCPU, 180GB Mem"
},
{
"gpuSvrCode": 3,
"nodeCounts": [
1
],
"useType": "TRAIN",
"serverProductCode": "SVR.VSVR.GPU.V100S.G004.C032.M360.NET.SSD.B050.G001",
"productName": "VCNSL.V100.V003",
"engFullName": "Tesla V100 NVlink 2.0 SXM2 4GPU, 32vCPU, 360GB Mem"
},
{
"gpuSvrCode": 4,
"nodeCounts": [
1
],
"useType": "DEV",
"serverProductCode": "SVR.VSVR.STAND.C004.M016.NET.SSD.B050.G002",
"productName": "VCNSL.CPU.V001",
"engFullName": "[Notebook] 4vCPU, 16GB Mem"
},
{
"gpuSvrCode": 5,
"nodeCounts": [
1
],
"useType": "DEV",
"serverProductCode": "SVR.VSVR.GPU.T4.G001.C004.M020.NET.SSD.B050.G001",
"productName": "VCNSL.GPUT4.V001",
"engFullName": "[Notebook] Tesla T4 GPU 1EA, GPU Memory 16GB, vCPU 4EA, Memory 20GB"
}
],
"totalCount": 5
}
Was this article helpful?