Query Analysis Time Series
- Print
- PDF
Query Analysis Time Series
- Print
- PDF
Article summary
Did you find this summary helpful?
Thank you for your feedback
We are preparing a localization service for the content. We will do our best to provide the localization service as soon as possible.
Analyze the search queries used at the specified time and calculate them by field.
- city1: city classification field1 ex) Seoul, Gyeonggi-do, Chungcheongbuk-do
- city2: city classification field2 ex) Gangnam-gu, Seocho, Guro-gu
- city3: city classification field2 ex) Yeoksam-dong, Jeongja-dong, Seocho-dong
- country: country
- word: word that stemmed from the search Query
POST https://cloudsearch.apigw.ntruss.com/CloudSearch/real/v1/domain/{name}/analysis/timeseries
Request
Request parameter
Parameter Name | Required | Type | Restrictions | Description |
---|---|---|---|---|
name | Yes | string | The name of the created domain |
Request body
Field Name | Required | Type | Restrictions | Description |
---|---|---|---|---|
from | Yes | string | Start time (UTC, ex: 20161027T171340Z) | |
to | Yes | string | End time (UTC, ex: 20161027T171340Z) | |
field | Yes | QueryAnalysisField | Aggregation field settings | |
field_value | No | string | Only return field value matching corresponding parameter | |
max_size | Yes | int | Maximum Size to Import | |
interval | Yes | int | interval of aggregation / unit : min |
Response
Field Name | Type | Description | Remarks |
---|---|---|---|
key_as_string | string | aggregate base time | Example: 2019-09-25T09: 50: 00.000Z |
key | number | aggreagte reference time (milliseconds) | Example: 1569405000000 |
doc_count | number | Sum of results aggregated over base time | |
aggregated_result.sum_other_doc_count | number | When the aggregate result is greater than the specified max_size value, the sum of all the values not printed in the result | |
aggregated_result.buckets [] | array | Grouping by key of aggreagte result | |
aggregated_result.buckets []. key | string | The value of the field used in the query during that time | |
aggregated_result.buckets []. doc_count | string | The number of keys used in the query during that time |
Response Status
Http Status | Desc |
---|---|
200 | OK |
400 | Bad Request |
401 | Unauthorized |
401 | there is no such service |
403 | Forbidden |
404 | Not Found |
500 | Internal Server Error |
Example
Example Request1 : In case 'field_value' is not available
POST https://cloudsearch.apigw.ntruss.com/CloudSearch/real/v1/domain/car_dev/analysis/timeseries
POST /CloudSearch/real/v1/domain/car_dev/analysis/timeseries HTTP/1.1
Host:cloudsearch.apigw.ntruss.com
accept:application/json
x-ncp-apigw-signature-v2: cDwtHuQeGmwWyNmwlN6XIGA66zge4iMXvfoDQNna05g=
x-ncp-apigw-timestamp: 1545817618751
x-ncp-iam-access-key: teGTwtcSEGA7fu28BGGi
{
"from": "2019-09-25T05:00:00Z",
"to": "2019-09-25T15:00:00Z",
"field": "word",
"max_size": 5,
"interval": 1
}
Example response
[
{
"key_as_string": "2019-09-25T09:50:00.000Z",
"key": 1569405000000,
"doc_count": 2,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "kia",
"doc_count": 1
},
{
"key": "hyundai",
"doc_count": 1
}
]
}
},
{
"key_as_string": "2019-09-25T09:53:00.000Z",
"key": 1569405180000,
"doc_count": 2,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "kia",
"doc_count": 2
}
]
}
}
]
Example Request2 : In case 'field_value' is available
POST https://cloudsearch.apigw.ntruss.com/CloudSearch/real/v1/domain/car_dev/analysis/timeseries
POST /CloudSearch/real/v1/domain/car_dev/analysis/timeseries HTTP/1.1
Host:cloudsearch.apigw.ntruss.com
accept:application/json
x-ncp-apigw-signature-v2: cDwtHuQeGmwWyNmwlN6XIGA66zge4iMXvfoDQNna05g=
x-ncp-apigw-timestamp: 1545817618751
x-ncp-iam-access-key: teGTwtcSEGA7fu28BGGi
{
"from": "2019-09-25T05:00:00Z",
"to": "2019-09-25T15:00:00Z",
"field": "word",
"field_value": "bmw",
"maxSize": 5,
"interval": 1
}
Example response
[
{
"key_as_string": "2019-09-25T10:35:00.000Z",
"key": 1569407700000,
"doc_count": 2,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 2
}
]
}
},
{
"key_as_string": "2019-09-25T10:38:00.000Z",
"key": 1569407880000,
"doc_count": 13,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 13
}
]
}
},
{
"key_as_string": "2019-09-25T11:14:00.000Z",
"key": 1569410040000,
"doc_count": 11,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 11
}
]
}
},
{
"key_as_string": "2019-09-25T11:15:00.000Z",
"key": 1569410100000,
"doc_count": 12,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 12
}
]
}
},
{
"key_as_string": "2019-09-25T11:16:00.000Z",
"key": 1569410160000,
"doc_count": 1013,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 1013
}
]
}
},
{
"key_as_string": "2019-09-25T11:17:00.000Z",
"key": 1569410220000,
"doc_count": 1016,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 1016
}
]
}
},
{
"key_as_string": "2019-09-25T11:18:00.000Z",
"key": 1569410280000,
"doc_count": 960,
"aggregated_result": {
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 960
}
]
}
}
]
Was this article helpful?